
Party Example

• Let's look at another
example using objects

• We'll highlight 2 new
concepts with this code:

• Composition

• Garbage Collection

Party
public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

• Instance variables of
objects can store
references to other
objects

• The Party class is
composed of an
ArrayList of Characters

Composition
public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

• hero is assigned a reference to an
instance/object of type Character

• hero is then reassigned to a new
reference

• We no longer have a reference to
the first Character object in
memory

• Since we cannot access this
object, it will be removed from
memory

Garbage Collection

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Memory Diagram

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

Character

battlesWon

expPoints

0x875

0x875

hero

this
Character

• Start by creating a new
Character object

• The constructor is
empty, but we still
create the instance
variables

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

Character

battlesWon

expPoints

0x875

0x875 0x320
0x875

0x320

hero

this

this

Character

• We immediately replace the
reference stored in hero with
a reference to a new object

• *You wouldn't actually do
this. This is only for the
example

0

0

Character

battlesWon

expPoints

0x320

Character

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

Character

battlesWon

expPoints

0x875

0x875 0x320
0x875

0x320

hero

this

this

Character

Garbage Collection

• When we no longer have access
to a reference to an object on the
heap, it is deleted from memory

• Java does this in the background
as we reassign variables

0

0

Character

battlesWon

expPoints

0x320

Character

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0x875 0x320
0x875

0x320

0x555

0x555

hero

this

this

fighter

this

Character

• Create another
instance of the
Character class
(Object of type
character)

0

0

Character

battlesWon

expPoints

0x320

Character

Character

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

hero

this

this

fighter

this

this

xp

Character

• When we call a method:

• this is added to the
stack frame

• this stores reference
to the calling object

0

0

Character

battlesWon

expPoints

0x320

Character

Character

winBattle

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

hero

this

this

fighter

this

this

xp

Character

• winBattle was called by
hero

• hero stores the reference
0x320

• this in the stack frame is
0x320

0

0

Character

battlesWon

expPoints

0x320

Character

Character

winBattle

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

hero

this

this

fighter

this

this

xp

Character

• Follow the
reference stored in
this to update the
instance variables

0 1

0 10

Character

battlesWon

expPoints

0x320

Character

Character

winBattle

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

hero

this

this

fighter

this

this

xp

Character

• This method's got side-
effects!

• winBattle returns void

• winBattle was called to
change the state of an
object on the heap

0 1

0 10

Character

battlesWon

expPoints

0x320

Character

Character

winBattle

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

0x746

0x746

hero

this

this

fighter

this

this

xp

party

this

Character

• When we create a new
Party, we also create a
new ArrayList via
composition

• Both objects are created
on the heap

0 1

0 10

0x313

0

Character

battlesWon

expPoints

0x320

Party

members

battlesWon

0x746

Character

Character

winBattle

0x313

Party

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

0x746

0x746

hero

this

this

fighter

this

this

xp

party

this

Character

• The is a stack frame created
for the ArrayList constructor

• When the code is part of
Java, and not our code, we
don't add it to the memory
diagram

0 1

0 10

0x313

0

Character

battlesWon

expPoints

0x320

Party

members

battlesWon

0x746

Character

Character

winBattle

0x313

Party

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

0x320

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

0x746

0x746

0x746

0x320

hero

this

this

fighter

this

this

xp

party

this

this

member

Character

• addCharacter takes a reference
to a Character as a parameter

• dot means "follow the
reference"

• We follow 2 references in one
line to get to the ArrayList in
memory

0 1

0 10

0x313

0

Character

battlesWon

expPoints

0x320

Party

members

battlesWon

0x746

Character

Character

winBattle

0x313

Party

addCharacter

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

0x320

0x555

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0

1

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

0x746

0x746

0x746

0x320

0x746

0x555

0x746

20

0

hero

this

this

fighter

this

this

xp

party

this

this

member

this

member

this

xp

x

Character

• Check out this line!

• dot means follow the
reference

• We'll jump around in
memory 3 times to reach
the Player at 0x320

0 1

0 10

0x313

0 1

Character

battlesWon

expPoints

0x320

Party

members

battlesWon

0x746

Character

Character

winBattle

0x313

Party

addCharacter

winBattle

addCharacter

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0

0

0x320

0x555

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0

1

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

0x746

0x746

0x746

0x320

0x746

0x555

0x746

20

0

0x320

20

hero

this

this

fighter

this

this

xp

party

this

this

member

this

member

this

xp

x

this

xp

Character

• Since we were at 0x320 in
memory when this method
is called

• 0x320 is the calling
object

• this stores 0x320

0 1 2

0 10 30

0x313

0 1

Character

battlesWon

expPoints

0x320

Party

members

battlesWon

0x746

Character

Character

winBattle

0x313

Party

addCharacter

winBattle

addCharacter

winBattle

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0 1

0 20

0x320

0x555

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0

1

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

0x746

0x746

0x746

0x320

0x746

0x555

0x746

20

0 1

0x320

20

0x555

20

hero

this

this

fighter

this

this

xp

party

this

this

member

this

member

this

xp

x

this

xp

this

xp

Character

• Repeat the process
with 0x555

0 1 2

0 10 30

0x313

0 1

Character

battlesWon

expPoints

0x320

Party

members

battlesWon

0x746

Character

Character

winBattle

0x313

Party

addCharacter

winBattle

addCharacter

winBattle

winBattle

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0 1

0 20

0x320

0x555

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0

1

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

0x746

0x746

0x746

0x320

0x746

0x555

0x746

20

0 1 2

0x320

20

0x555

20

hero

this

this

fighter

this

this

xp

party

this

this

member

this

member

this

xp

x

this

xp

this

xp

Character

• The loop ends
when x reaches 2

• x is removed from
memory

0 1 2

0 10 30

0x313

0 1

Character

battlesWon

expPoints

0x320

Party

members

battlesWon

0x746

Character

Character

winBattle

0x313

Party

addCharacter

winBattle

addCharacter

winBattle

winBattle

public class Party {

 private ArrayList<Character> members;

 private int battlesWon = 0;

 public Party() {

 this.members = new ArrayList<>();

 }

 public void addCharacter(Character member) {

 this.members.add(member);

 }

 public void winBattle(int xp) {

 this.battlesWon++;

 for (int x=0; x < this.members.size(); x++) {

 this.members.get(x).winBattle(xp);

 }

 }

 public static void main(String[] args) {

 Character hero = new Character();

 hero = new Character();

 Character fighter = new Character();

 hero.winBattle(10);

 Party party = new Party();

 party.addCharacter(hero);

 party.addCharacter(fighter);

 party.winBattle(20);

 }

}

public class Character {

 private int battlesWon = 0;

 private int expPoints = 0;

 public Character() {}

 public void winBattle(int xp) {

 this.battlesWon++;

 this.expPoints += xp;

 }

}

Stack
ValueName Heap

in/out

0

0

0 1

0 20

0x320

0x555

Character

battlesWon

expPoints

0x875

Character

battlesWon

expPoints

0x555

0

1

0x875 0x320
0x875

0x320

0x555

0x555

0x320

10

0x746

0x746

0x746

0x320

0x746

0x555

0x746

20

0 1 2

0x320

20

0x555

20

hero

this

this

fighter

this

this

xp

party

this

this

member

this

member

this

xp

x

this

xp

this

xp

Character

• The method calls
end

• The program ends

0 1 2

0 10 30

0x313

0 1

Character

battlesWon

expPoints

0x320

Party

members

battlesWon

0x746

Character

Character

winBattle

0x313

Party

addCharacter

winBattle

addCharacter

winBattle

winBattle

