
Polymorphism

Recall Inheritance
• Use the extends keyword to

inherit all state and behavior
from another class

• Weapon and HealthPotion
both inherit  
"xLoc", "yLoc", "use", and the
constructor from GameItem

• Weapon replaces/overrides the
inherited behavior of the use
method

• Super constructor must be
called in subclass constructors

public class GameItem {
 private double xLoc;
 private double yLoc;
 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }
 public void use() {
 System.out.println("Item Used");
 }
}

public class HealthPotion extends GameItem {
 private int increase;
 public HealthPotion(double xLoc, double yLoc, int increase) {
 super(xLoc, yLoc);
 this.increase = increase;
 }
}

public class Weapon extends GameItem {
 private int damage;
 public Weapon(double xloc, double yLoc, int damage) {
 super(xloc, yLoc);
 this.damage = damage;
 }
 public int getDamage() {
 return damage;
 }
 @Override
 public void use() {
 System.out.println("Damage dealt: " + this.damage);
 }
}

Recall InheritanceRecall Inheritance
• Weapon

explicitly 
extends  
GameItem

• GameItem
implicitly 
extends  
Object

• Weapon has the
state and
behavior of all 3
classes

GameItem

Weapon

Object

public class GameItem {
 private double xLoc;
 private double yLoc;
 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }
 public void use() {
 System.out.println("Item Used");
 }
}

public class Weapon extends GameItem {
 private int damage;
 public Weapon(double xloc, double yLoc, int damage) {
 super(xloc, yLoc);
 this.damage = damage;
 }
 public int getDamage() {
 return damage;
 }
 @Override
 public void use() {
 System.out.println("Damage dealt: " + this.damage);
 }
}

• When a class
extends another
class, we call this
an "is-a"
relationship

• is-a relationships
can be direct or
indirect

• Weapon is-a 
GameItem

• Weapon is-an 
Object

GameItem

Weapon

Object

public class GameItem {
 private double xLoc;
 private double yLoc;
 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }
 public void use() {
 System.out.println("Item Used");
 }
}

public class Weapon extends GameItem {
 private int damage;
 public Weapon(double xloc, double yLoc, int damage) {
 super(xloc, yLoc);
 this.damage = damage;
 }
 public int getDamage() {
 return damage;
 }
 @Override
 public void use() {
 System.out.println("Damage dealt: " + this.damage);
 }
}

Inheritance

Polymorphism

If an object is a type

It can be stored in variables of that type

Polymorphism
• Weapon is 3 different types

• Polymorphism

• Poly -> Many

• Morph -> Forms

• Polymorphism -> Many Forms

• Can store objects in variables of any of their types

GameItem

Weapon

Object

Polymorphism

• All of these assignments are allowed

• Weapon has 3 different types!

public static void main(String[] args) {
 Weapon weapon1 = new Weapon(1.0, 1.0, 10);
 GameItem weapon2 = new Weapon(1.0, 1.0, 10);
 Object weapon3 = new Weapon(1.0, 1.0, 10);
}

GameItem

Weapon

Object

Polymorphism

If an object is a type

It can be stored in variables of that type

Polymorphism
• Weapon has 3 different types

• Can store values in variables of any of their types

• This is polymorphism.

• What implications does this have?

public static void main(String[] args) {
 Weapon weapon1 = new Weapon(1.0, 1.0, 10);
 GameItem weapon2 = new Weapon(1.0, 1.0, 10);
 Object weapon3 = new Weapon(1.0, 1.0, 10);
}

Polymorphism
• Can only access state and behavior of the variable type

• Defined getDamage in the Weapon class

• GameItem has no such method

• Even when weapon2 stores a reference to a Weapon
object, it cannot access getDamage

public static void main(String[] args) {
 Weapon weapon1 = new Weapon(1.0, 1.0, 10);
 GameItem weapon2 = new Weapon(1.0, 1.0, 10);
 Object weapon3 = new Weapon(1.0, 1.0, 10);
 weapon1.getDamage();
// weapon2.getDamage(); Does not compile
// weapon3.getDamage(); Does not compile
}

Polymorphism
• Can only access state and behavior of the variable type

• The use method exists in the GameItem class and is inherited
by Weapon

• Can call this method from variables of both types

• The Object class does not know about the use method

• Cannot call use from a variable of type Object

public static void main(String[] args) {
 Player player = new Player(50);
 Weapon weapon1 = new Weapon(1.0, 1.0, 10);
 GameItem weapon2 = new Weapon(1.0, 1.0, 10);
 Object weapon3 = new Weapon(1.0, 1.0, 10);
 weapon1.use(player);
 weapon2.use(player);
// weapon3.use(player); Does not compile
}

Polymorphism
• If the method is overridden, the override method is

called regardless of the type of the variable

• The type of the variable determines which methods can
be called

• The type of object determines which method is called

public static void main(String[] args) {
 Player player = new Player(50);
 Weapon weapon1 = new Weapon(1.0, 1.0, 10);
 GameItem weapon2 = new Weapon(1.0, 1.0, 10);
 Object weapon3 = new Weapon(1.0, 1.0, 10);
 weapon1.use(player);
 weapon2.use(player);
// weapon3.use(player); Does not compile
}

Polymorphism
• The toString method is defined in the Object class

• Can call toString from any variable type

• *Except primitives

public static void main(String[] args) {
 Player player = new Player(50);
 Weapon weapon1 = new Weapon(1.0, 1.0, 10);
 GameItem weapon2 = new Weapon(1.0, 1.0, 10);
 Object weapon3 = new Weapon(1.0, 1.0, 10);
 weapon1.toString();
 weapon2.toString();
 weapon3.toString();
}

Polymorphism
• Why use polymorphism if it restricts

functionality?

• Simplify other classes

• For the Player class to use a
GameItem, write 2 methods

• One to use a Weapon

• One to use a HealthPotion

• Each item the Player can use will
need another method in the Player
class

• Tedious to expand the game

public class Player extends GameItem {
 private int maxHP;
 private int HP;
 private int damageDealt;

 public Player(int maxHP) {
 super(0, 0);
 this.maxHP = maxHP;
 this.HP = maxHP;
 this.damageDealt = 4;
 }

 public void useItem(GameItem item){
 item.use(this);
 }

 @Override
 void use(Player player) {
 player.setHP(player.getHP() - this.damageDealt);
 }

}

Polymorphism
• Instead, write a single method that takes

a GameItem!

• This method can be called with a
reference to a Weapon or HealthPotion as
an argument

• The argument value is assigned to the
parameter variable

• This is a legal assignment because of
polymorphism!

• Can add any number of GameItem
classes to our game without changing the
Player class

• Easy to add more features to your game

public class Player extends GameItem {
 private int maxHP;
 private int HP;
 private int damageDealt;

 public Player(int maxHP) {
 super(0, 0);
 this.maxHP = maxHP;
 this.HP = maxHP;
 this.damageDealt = 4;
 }

 public void useItem(GameItem item){
 item.use(this);
 }

 @Override
 void use(Player player) {
 player.setHP(player.getHP() - this.damageDealt);
 }

}

Polymorphism
• In this method, we can't access any

methods that are not known to the
GameItem class

• This sacrifice is often worth it for
the added versatility of methods
that take super types

public class Player extends GameItem {
 private int maxHP;
 private int HP;
 private int damageDealt;

 public Player(int maxHP) {
 super(0, 0);
 this.maxHP = maxHP;
 this.HP = maxHP;
 this.damageDealt = 4;
 }

 public void useItem(GameItem item){
 item.use(this);
 }

 @Override
 void use(Player player) {
 player.setHP(player.getHP() - this.damageDealt);
 }

}

Polymorphism
Polymorphism and data structures

• There's more!

• We can create data structures of a super type

• These data structures can store any type that inherits
from that type

• This ArrayList of GameItems can store HealthPotions
and Weapons!

• We have a data structure that stores multiple
different types

• Something we took for granted in JS and Python

public class Player extends GameItem {
 private int maxHP;
 private int HP;
 private int damageDealt;
 private ArrayList<GameItem> inventory;

 public Player(int maxHP) {
 super(0, 0);
 this.maxHP = maxHP;
 this.HP = maxHP;
 this.damageDealt = 4;
 this.inventory = new ArrayList<>();
 }

 public void useItem(GameItem item){
 item.use(this);
 }

 public void pickUpItem(GameItem item) {
 this.inventory.add(item);
 }

 public void useAllInventoryItems() {
 for (GameItem item : this.inventory) {
 item.use(this);
 }
 this.inventory = new ArrayList<>();
 }

 @Override
 void use(Player player) {
 player.setHP(player.getHP() - this.damageDealt);
 }

}

Abstract

Abstract Classes
• Methods can be abstract

• Specify the method signature (name,
return type, parameters)

• Do not define the method (no body)

• End the method with a semicolon

• Abstract methods cannot be called

• What would you expect to happen?
Nothing? What if it has a return type?

public abstract class GameItem {
 private double xLoc;
 private double yLoc;

 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }

 abstract void use(Player player);

}

Abstract Classes
• If a class has >0 abstract methods, the

class itself must be abstract

• Abstract classes cannot be
instantiated

• Cannot create a new GameItem if
GameItem is abstract

• Prevents anyone from calling an
abstract method

• They only exist to be inherited

public abstract class GameItem {
 private double xLoc;
 private double yLoc;

 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }

 abstract void use(Player player);

}

Abstract Classes

• Any class inheriting from an abstract
class has a requirement to implement all
abstract methods

• If the extending class overrides the
abstract method, it then exists and
can be called

• If a subclass does not implement all
abstract methods, it too must be
abstract

public abstract class GameItem {
 private double xLoc;
 private double yLoc;

 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }

 abstract void use(Player player);

}

Abstract Classes
• Why use abstract methods/classes?

• You can only call methods that are known to
your variable type

• Abstract methods are known to the abstract
class

• You can call abstract methods using
polymorphism

• Use an abstract method when you want all
inheriting classes to have a method, but there's
no clear default behavior for the method

public abstract class GameItem {
 private double xLoc;
 private double yLoc;

 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }

 abstract void use(Player player);

}

Interfaces
• If we take this one step further, we can

create interfaces

• Interfaces are similar to classes

• Interfaces can only have abstract
methods

• No instance variables

• No constructor

• No methods with definitions

• To inherit an interface, use the
implements keyword instead of extends

public interface Comparator<T> {
 boolean compare(T a, T b);
}

public class IntDecreasing implements Comparator<Integer> {
 @Override
 public boolean compare(Integer a, Integer b) {
 return a > b;
 }
}

Interfaces
• Why interfaces?

• You can only extend one class

• You can implement as many interfaces
as you'd like

• *This avoids the potential of multiple
definitions for the same method

public interface Comparator<T> {
 boolean compare(T a, T b);
}

public class IntDecreasing implements Comparator<Integer> {
 @Override
 public boolean compare(Integer a, Integer b) {
 return a > b;
 }
}

