
Abstract

Abstract Classes
• Methods can be abstract

• Specify the method signature (name,
return type, parameters)

• Do not define the method (no body)

• End the method with a semicolon

• Abstract methods cannot be called

• What would you expect to happen?
Nothing? What if it has a return type?

public abstract class GameItem {
 private double xLoc;
 private double yLoc;

 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }

 abstract void use(Player player);

}

Abstract Classes
• If a class has >0 abstract methods, the

class itself must be abstract

• Abstract classes cannot be
instantiated

• Cannot create a new GameItem if
GameItem is abstract

• Prevents anyone from calling an
abstract method

• They only exist to be inherited

public abstract class GameItem {
 private double xLoc;
 private double yLoc;

 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }

 abstract void use(Player player);

}

Abstract Classes

• Any class inheriting from an abstract
class has a requirement to implement all
abstract methods

• If the extending class overrides the
abstract method, it then exists and
can be called

• If a subclass does not implement all
abstract methods, it too must be
abstract

public abstract class GameItem {
 private double xLoc;
 private double yLoc;

 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }

 abstract void use(Player player);

}

Abstract Classes
• Why use abstract methods/classes?

• You can only call methods that are known to
your variable type

• Abstract methods are known to the abstract
class

• You can call abstract methods using
polymorphism

• Use an abstract method when you want all
inheriting classes to have a method, but there's
no clear default behavior for the method

public abstract class GameItem {
 private double xLoc;
 private double yLoc;

 public GameItem(double xLoc, double yLoc) {
 this.xLoc = xLoc;
 this.yLoc = yLoc;
 }

 abstract void use(Player player);

}

Interfaces
• If we take this one step further, we can

create interfaces

• Interfaces are similar to classes

• Interfaces can only have abstract
methods

• No instance variables

• No constructor

• No methods with definitions

• To inherit an interface, use the
implements keyword instead of extends

public interface Comparator<T> {
 boolean compare(T a, T b);
}

public class IntDecreasing implements Comparator<Integer> {
 @Override
 public boolean compare(Integer a, Integer b) {
 return a > b;
 }
}

Interfaces
• Why interfaces?

• You can only extend one class

• You can implement as many interfaces
as you'd like

• *This avoids the potential of multiple
definitions for the same method

public interface Comparator<T> {
 boolean compare(T a, T b);
}

public class IntDecreasing implements Comparator<Integer> {
 @Override
 public boolean compare(Integer a, Integer b) {
 return a > b;
 }
}

