
Reading Files

Files
• We've used data structures to manage all our data so

far
• Why ever use a file?

• Data structures are stored in memory
• Only exist while our program is running

• Files are stored on the hard drive (disk)
• Persistent storage

Reading Files
• Let's read files in Java!
• We'll break down this example

import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

public static ArrayList<String> readFile(String filename) {
 return new ArrayList<>(Files.readAllLines(Paths.get(filename)));
}

Reading Files
• Before reading a file
• We need to create a Path object from the filename
• Paths needs to be imported so we can call its get

static method

import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

public static ArrayList<String> readFile(String filename) {
 return new ArrayList<>(Files.readAllLines(Paths.get(filename)));
}

Reading Files
• Call the static method readAllLines from the imported Files

object
• There are other ways to read files in Java
• This is the simplest, but it is unbuffered and is inefficient for

very large files (This method is fine for CSE116)

import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

public static ArrayList<String> readFile(String filename) {
 return new ArrayList<>(Files.readAllLines(Paths.get(filename)));
}

Reading Files
• Files.readAllLines returns a List
• If you don't want to work with the List

interface, create a new ArrayList

import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

public static ArrayList<String> readFile(String filename) {
 return new ArrayList<>(Files.readAllLines(Paths.get(filename)));
}

Exceptions
• This code is dangerous!
• It relies on data that is outside the control of this

program (The file)
• If the file doesn't exist, this program throws an

exception

import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

public static ArrayList<String> readFile(String filename) {
 return new ArrayList<>(Files.readAllLines(Paths.get(filename)));
}

Exceptions
• Exceptions are thrown when something happens in a

method call that it doesn't handle
• Commonly, you see thrown exceptions when there's

an error in your code
• IndexOutOfBoundsException, NullPointerException,

StackOverflowError, etc.
• An uncaught exception will crash the program
• We don't want our program to crash if the file is not

found, so we will catch the exception

Exceptions
• We can run risky code in a try block
• If an exception is thrown, run the code

in the corresponding catch block

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

public static ArrayList<String> readFile(String filename) {
 try {
 return new ArrayList<>(Files.readAllLines(Paths.get(filename)));
 } catch (IOException e) {
 return new ArrayList<>();
 }
}

Exceptions
• We try to run this code
• It might thrown an exception
• if it does throw an exception, stop running code

from this block and move to the catch block
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

public static ArrayList<String> readFile(String filename) {
 try {
 return new ArrayList<>(Files.readAllLines(Paths.get(filename)));
 } catch (IOException e) {
 return new ArrayList<>();
 }
}

Exceptions
• Write catch blocks for specific exception types
• We're expecting an IOException so we will catch this type of

exception
• Can have multiple catch blocks if multiple types of exceptions can be

thrown
• If an exception is throw that doesn't match the type of any catch

block, the exception is uncaught and the program will crashimport java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

public static ArrayList<String> readFile(String filename) {
 try {
 return new ArrayList<>(Files.readAllLines(Paths.get(filename)));
 } catch (IOException e) {
 return new ArrayList<>();
 }
}

Exceptions
• If an IOException is thrown
• Run the code in the catch block
• This code will attempt to read the file
• Return an ArrayList containing all the lines of the file
• Return an empty ArrayList if the file does not exist

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

public static ArrayList<String> readFile(String filename) {
 try {
 return new ArrayList<>(Files.readAllLines(Paths.get(filename)));
 } catch (IOException e) {
 return new ArrayList<>();
 }
}

String Parsing

String Parsing
• We'll read several CSV files in this course
• To handle CSV files, we'll split each line of

the file on commas

• Note: This is not the proper way to parse
CSV as the format is more complicated that
this (eg. if the data itself contains commas).
The data we'll handle in CSE116 is
specifically prepared to allow splitting on
commas

String Splitting
• Use the split method of the String class

to separate a String by a delimiter

• This example will split the String "a,b,c"
on commas to return an Array with the
values "a", "b", and "c"

String line = "a,b,c";
ArrayList<String> splits = new ArrayList<>(Arrays.asList(line.split(",")));

String Splitting
• Split returns an Array
• If you don't want to use a plain Array
• Convert the Array to a List using

Arrays.asList
• Create a new ArrayList with the List as a

constructor argument

String line = "a,b,c";
ArrayList<String> splits = new ArrayList<>(Arrays.asList(line.split(",")));

String to Number
• Sometimes we have to work with numbers that are

stored in files as Strings
• Use the corresponding parse method to convert the

String to an int or a double
• These methods only work if the number is "well-

formed" meaning that it can be converted
• eg. parsing the String "four" as an int will throw an

exception

int anInt = Integer.parseInt("64");
double aDouble = Double.parseDouble("1.5");

Live Coding

	Reading Files
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

