
State Pattern
Jumper Example

Jumper
• 2 Player vertical scrolling

platform

• Screen scrolls up as the
players climb the
platforms

• The bottom of the screen
is game over

• Goal: Climb faster than
the other player

Jumper - Player
How does the player move?

• User inputs

• States! <-- Good stuff

Only 3 inputs to control each player

• Left button

• Right button

• Jump button

Player 1:

• a, d, w

Player 2:

• Left, right, up arrows

Jumper Player Behavior
Each player should

• Walk left and right when keys are pressed

• Jump when jump is pressed

• Jump higher if walking instead of
standing still

• Jump at different heights based on how
long the jump button is held after a jump

• Move left and right slower while in the air
if the direction is changed

• Jump through platforms while jumping up

• Land on platforms while falling down

• Fall if walked off a ledge

• Block all inputs if the bottom of the
screen is reached

Player behavior
We could write all this
behavior without the state
pattern

• Code will likely be hard to
follow

• Difficult to add new
features

Jumper Player Behavior
Each player should

• Walk left and right when keys are pressed

• Jump when jump is pressed

• Jump higher if walking instead of
standing still

• Jump at different heights based on how
long the jump button is held after a jump

• Move left and right slower while in the air
if the direction is changed

• Jump through platforms while jumping up

• Land on platforms while falling down

• Fall if walked off a ledge

• Block all inputs if the bottom of the
screen is reached

How to implement these features?

• Write your API

• What methods will change
behavior depending on the
current state of the object

• These methods define your
API and are declared in the
state abstract class

• Decide what states should exist

• Any situation where the
behavior is different should be
a new state

• Determine the transitions
between states

Jumper Player Behavior
Each player should

• Walk left and right when keys are
pressed

• Jump when jump is pressed

• Jump higher if walking instead of standing
still

• Jump at different heights based on how
long the jump button is held after a jump

• Move left and right slower while in the air
if the direction is changed

• Jump through platforms while jumping up

• Land on platforms while falling down

• Fall if walked off a ledge

• Block all inputs if the bottom of the
screen is reached

How to implement these
features?

• Write your API

• What methods will
change behavior
depending on the current
state of the object

API:

• left/right/jump pressed or
released

• 6 methods

• Land on a platform

Jumper Player Behavior
Each player should

• Walk left and right when keys are pressed

• Jump when jump is pressed

• Jump higher if walking instead of
standing still

• Jump at different heights based on how
long the jump button is held after a jump

• Move left and right slower while in the air
if the direction is changed

• Jump through platforms while jumping up

• Land on platforms while falling down

• Fall if walked off a ledge

• Block all inputs if the bottom of the
screen is reached

How to implement these
features?

• Decide what states should
exist

States:

• Standing

• Walking

• Jumping/Rising

• Falling

• Dead (Bellow Screen)

Jumper Player Behavior
Each player should

• Walk left and right when keys are
pressed

• Jump when jump is pressed

• Jump higher if walking instead of
standing still

• Jump at different heights based on how
long the jump button is held after a jump

• Move left and right slower while in the air
if the direction is changed

• Jump through platforms while jumping up

• Land on platforms while falling down

• Fall if walked off a ledge

• Block all inputs if the bottom of the
screen is reached

How to implement these features?

• Determine the transitions between states

State Transitions:

• Standing -> Walking

• left/right pressed

• Walking -> Standing

• left/right released

• Walking/Standing -> Jumping

• Jump pressed

• Falling -> Standing

• Land on a platform

• Walking -> Falling

• Walk off a platform

• Jumping -> Falling

• Apex of jump reached

• Any -> GameOver

• Reach the bottom of the screen

Jumper Player Behavior

Standing WalkingLeft or right pressed

Left or right released

Let's visualize the states and transitions in a state
diagram

FallingRising

Game
Over

Bottom reached
in any state

Walk
off

platform
Jump pressed

Apex Reached

Fall on
platform

Jumper Player Behavior

Standing Walking

For each state, implement the API methods with the desired behavior in
that state

• Add default behavior in the state subclass

FallingRising

Game
Over

Walk
off

platform

Fall on
platform

Left or right pressed

Left or right released

Bottom reached
in any state

Jump pressed

Apex Reached

Jumper Player Behavior
Use inheritance to limit duplicate code

• Factor out common behavior between states into new classes

State

Behavior API

InAir

Partially Implemented API

OnGround

Partially Implemented API

Rising

Fully Implemented API

Falling

Fully Implemented API

Standing

Fully Implemented API

Walking

Fully Implemented API

GameOver

Fully Implemented API

Task: Add a double jump to Jumper
Adding Functionality

• How can we add a double jump?

• Players can jump 1 additional time while in the air

• With poor design

• This could be extremely difficult!

• May required modifying a significant amount of existing code

• With our state pattern

• No problem at all

Task: Add a double jump to Jumper
Adding Functionality

• Add functionality to existing states

• Rising and Falling states now react to the jump button by jumping
again (Set velocity.z to the jump velocity)

• We'll add new states

• RisingAfterDoubleJump/FallingAfterDoubleJump

• Extend Rising/Falling respectively

• Override the jump button press to do nothing

• Update state transitions

• Press jump from Rising/Falling transitions to the respective
AfterDoubleJump state

• Reaching the apex in RisingAfterDoubleJump transitions to
FallingAfterDoubleJump (Not Falling)

Task: Add a double jump to Jumper
Adding Functionality

• This task could have been completed with a boolean flag instead
of using new states

• If this approach is used for many features the code will be harder
to maintain

• More to the point: What if your professor says you can't use
conditionals, but you have a situation where a button should
only work once?

• Try adding more states

var usedDoubleJump = false

override def jumpPressed(): Unit = {
 if(!this.usedDoubleJump) {
 player.velocity.z = player.standingJumpVelocity
 this.usedDoubleJump = true
 }
}

Jumper Player Behavior

Standing Walking

FallingRising

Game
Over

Walk
off

platform

Fall on
platform

Left or right pressed

Left or right released

Bottom reached
in any state

RisingAfterDoubleJump FallingAfterDoubleJump

Jump pressed
Jump pressed

Apex Reached

Fall on
platform

Jump pressed

Apex Reached

Jumper Player Behavior
State

Behavior API

InAir

Partially Implemented API

OnGround

Partially Implemented API

Rising

Fully Implemented API

Falling

Fully Implemented API

Standing

Fully Implemented API

Walking

Fully Implemented API

GameOver

Fully Implemented API

RisingAfterDoubleJump

Fully Implemented API

FallingAfterDoubleJump

Fully Implemented API

