State Pattern

Design Patterns

e Approaches to common programming design
problems

e T[here are many design patterns
e We'll only focus on the state pattern in this course

e For more patterns, search "The Gang of Four"

e The primary goal of design patterns is to simplify
the Design and Maintainability of our programs

State Pattern

Applies Polymorphism

Every object contains state and behavior

We use state variables to change the state of an
object and its behavior can depend on this state

What if we want to significantly change the
behavior of an object?

State Pattern

e What if we want to significantly change the
behavior of an object?

e Use if statements?
e |(f(condition){someBehavior()}

e else{completelyDifferentBehavior()}

e This will work, but what about maintainability?

State Pattern

e What if we want to significantly change the behavior of an object?

e What if we want many different behaviors
e [f(condition){someBehavior()}
e e¢lse if(otherCondition1){otherBehavior1()}
e else if(otherCondition2){otherBehavior2()}
e e¢lse if(otherCondition3){otherBehavior3()}
e else{completelyDifferentBehavior()}

e This would all be in a single method
e Hard to read
e Hard to maintain

e Need to re-test existing functionality each time a condition is added

State Pattern

Let's try using the state pattern as an alternative

Instead of storing each behavior in the same class, we defer
functionality to a state object

Have a state variable containing the current state as an object
Change the state as needed

Decisions made on type (Polymorphism) not value (Conditionals)
Modularizes code

e More, but smaller, pieces of functionality

Easy to add new features without breaking tested features

State Pattern

o State is represented by an abstract class
e Defines the methods that can be called (API)
 Extend the state class for each concrete state
e One class for each possible state

e Each state will have a reference to the object to which
it Is attached

e |Use this reference to access other state variables

e Use this reference to change state

State Pattern - Example

e OK cool, but what does all that actually mean?

e |et's use the cool-headed Bruce Banner as an example
e Bruce is a world-class scientist
* Bruce can successfully drive a car

e Bruce is not very helpful in a fight

State Pattern - Example

e However.. Make Bruce angry and he'll become The Incredible Hulk!
e Smashes cars
e (Greatin a fight

e (Qut of control!

State Pattern - Example

 One being

 Two significantly different behaviors depending on
his current state

State Pattern - Example

e Jo simulate Bruce in a program, we will create one

BruceBanner class containing the behavior in both
states

e Bruce Banner can use cars and fight very differently
depending on his state

e Defer to a State object to determine how he behaves

' ’/ ,’¢,'/._/I:/

State Pattern - Example

public class BruceBanner {

e Jo simulate Bruce in a program, we
will create one BruceBanner class

private State state=new DrBanner(this);

public void setState(State state)/{

containing the behavior in both states | this.staterstate;
- public.void makeAngry () {
 Bruce Banner can use cars and fight | this.state.makedngry();
very differently depending on his state public void calmbown(){

this.state.calmbDown() ;

. : }
e Defer to a State object to determine public void useCar(Car car){

this.state.useCar(car);
how he behaves)

public void fight(){
this.state.fight();

State Pattern - Example

e (Create State as an abstract class to define all
: ublic interface State {
the methods each state must contain (API) " Void makeangry();

void calmbDown();
volid useCar(Car car);

e Extend State for each possible concrete state void fight();

* |Implement the methods for each state

public class DrBanner implements State{ public class TheHulk implements State {

private BruceBanner banner; private BruceBanner banner;

public DrBanner (BruceBanner banner){ public TheHulk(BruceBanner banner){
this.banner=banner; this.banner=banner;

} }

public void makeAngry(){ public void makeAngry(){
banner.setState(new TheHulk(this.banner)); System.out.println("already angry");

} }

public void calmDown(){ public void calmbDown(){
System.out.println("already calm"); banner.setState(new DrBanner (banner));

} }

public void useCar(Car car){ public void useCar(Car car){
car.drive(false); car.smash();

} }

public void fight(){ public void fight(){
System.out.println("this won't end well"); System.out.println("Hulk Smash!");

} }

public class BruceBanner {
private State state=new DrBanner(this);
public void setState(State state){

this.state=state;

}

public void makeAngry() {
this.state.makeAngry();

}

public void calmbDown () {
this.state.calmbDown() ;

}

public void useCar(Car car){
this.state.useCar(car);

}

public void fight(){
this.state.fight();

}

State Pattern - Example

e BruceBanner class stores a variable
of type State

public interface State {
void makeAngry();

e Don't worry about what concrete vold calmbown();
_ volid useCar (Car car);
type state Is void fight();

e Through polymorphism, the
methods in State must be

Implemented and can be called public class BruceBanner {

private State state=new DrBanner(this);
public void setState(State state)/{

this.state=state;

}

e Pass each new state a reference to TSN
}
BruceBanner public void calmbDown() {
> this.state.calmbown();
e Use the keyword this }
public void useCar(Car car){
: ; his. .u r r);
 Since the reference is passed, each L rsrare nsetanioan)
state can access Bruce's state public void fight(){

this.state.fight();

variables, including the state itself }

State Pattern - Example

e Having access to the state allows
each state to replace itself with a public interface State {

void makeAngry();

volid calmbDown();
neW State volid useCar(Car car);

void fight();

e \We call this a state transition

public class DrBanner implements State(public class TheHulk implements State {
private BruceBanner banner; private BruceBanner banner;
public DrBanner (BruceBanner banner){ public TheHulk(BruceBanner banner) {
this.banner=banner; this.banner=banner;

} }

public void makeAngry(){ public void makeAngry(){
banner.setState(new TheHulk(this.banner)); System.out.println("already angry");

} }

public void calmbDown () { public void calmbDown () {
System.out.println("already calm"); banner.setState(new DrBanner (banner));

} }

public void useCar(Car car){ public void useCar(Car car){
car.drive(false); car.smash();

} }
public void fight(){ public void fight(){
System.out.println("this won't end well"); System.out.println("Hulk Smash!");

} }

State Pattern - Example

public class DrBanner implements State{
private BruceBanner banner;
public DrBanner (BruceBanner banner){

this.banner=banner;
}
public void makeAngry(){
banner.setState(new TheHulk(this.banner));

}

public void calmDown(){
System.out.println("already calm");

}

public void useCar(Car car){
car.drive(false);

}
public void fight(){

System.out.println("this won't end well");

}

public interface State {
void makeAngry();
void calmDown();
volid useCar(Car car);
void fight();

public class TheHulk implements State {
private BruceBanner banner;
public TheHulk(BruceBanner banner){
this.banner=banner;

}
public void makeAngry() {

System.out.println("already angry");
}

public void calmDown(){
banner.setState(new DrBanner (banner));

}

public void useCar(Car car){
car.smash();

}
public void fight(){

System.out.println("Hulk Smash!");
}

public class BruceBanner {

private State state=new DrBanner(this);

public void setState(State state){
this.state=state;

}

public void makeAngry(){
this.state.makeAngry();

}

public void calmDown(){
this.state.calmbDown() ;

}

public void useCar(Car car){
this.state.useCar(car);

}

public void fight(){
this.state.fight();

}

State Pattern - Example

e With two states we could have easily used a single
conditional and a boolean flag to store the state

e Arguably simpler than using the state pattern

* The true power of this pattern comes when we
have more states

State Pattern - Example

e Meet Professor Hulk

e Bruce Banner transformed as the Hulk with full control

e Candrive a car and is great in a fight

State Pattern - Example

e Jo add the new state

e (Create a new class and implement the State
methods

public class BruceBanner {
private State state=new DrBanner(this);

public void setState(State state){
this.state=state;

e Add a state transition to enter the new state

}

public void makeAngry() {
this.state.makeAngry();

e Did not modify any existing functionality!
}

public void calmDown/() {

public class ProfessorHulk implements State({ this.state.calmDown();

private BruceBanner banner;

public ProfessorHulk(BruceBanner banner){
this.banner=banner;

}

public void makeAngry(){
System.out.println("no problem");

}

public void calmbDown () {

System.out.println("already calm");

}

public void useCar(Car car){
car.drive(true);

}
public void fight(){

System.out.println("smash carefully");

}

}

public void useCar(Car car){
this.state.useCar(car);

}

public void fight(){
this.state.fight();

}

public void learnControl(){
this.state=new ProfessorHulk(this);

}

State Pattern - Example

e |f we want functionality that is the
same In all states

public class BruceBanner {

o Add |'t 'to the CIaSS Contalnlng the private State state=new DrBanner (this);
e iRl
}
e [Or, add it to the State class so all TSN
states inherit that functionality] e void catmbown()

this.state.calmbDown() ;

e Bruce can become Professor Hulk blic void useCar(Car car)

from either of his other states }

public void fight(){

e Add this transition to BruceBanner | thisestate.fight();

public void learnControl() {

o NOte that there's no gomg back to } this.state=new ProfessorHulk(this);
the other two states once he
becomes Professor Hulk

this.state.useCar(car);

State Pattern - Example

e State Diagrams
 Visualize states and state transitions
e Very helpful while designing with the state pattern

e The state diagram for Bruce Banner is as follows

makeAngry()

Initial state

calmDown()

learnControl() learnControl()

State Pattern - Design

e Write your API

e What methods will change behavior depending
on the current state of the object

e These methods define your AP| and are declared
in the State class

e Decide what states should exist

 Any situation where the behavior is different
should be a new state

e Determine the transitions between states

