
State Pattern

Design Patterns
• Approaches to common programming design

problems

• There are many design patterns

• We'll only focus on the state pattern in this course

• For more patterns, search "The Gang of Four"

• The primary goal of design patterns is to simplify
the Design and Maintainability of our programs

State Pattern
• Applies Polymorphism

• Every object contains state and behavior

• We use state variables to change the state of an
object and its behavior can depend on this state

• What if we want to significantly change the
behavior of an object?

State Pattern
• What if we want to significantly change the

behavior of an object?

• Use if statements?

• if(condition){someBehavior()}

• else{completelyDifferentBehavior()}

• This will work, but what about maintainability?

State Pattern
• What if we want to significantly change the behavior of an object?

• What if we want many different behaviors

• if(condition){someBehavior()}

• else if(otherCondition1){otherBehavior1()}

• else if(otherCondition2){otherBehavior2()}

• else if(otherCondition3){otherBehavior3()}

• else{completelyDifferentBehavior()}

• This would all be in a single method

• Hard to read

• Hard to maintain

• Need to re-test existing functionality each time a condition is added

State Pattern
• Let's try using the state pattern as an alternative

• Instead of storing each behavior in the same class, we defer
functionality to a state object

• Have a state variable containing the current state as an object

• Change the state as needed

• Decisions made on type (Polymorphism) not value (Conditionals)

• Modularizes code

• More, but smaller, pieces of functionality

• Easy to add new features without breaking tested features

State Pattern
• State is represented by an abstract class

• Defines the methods that can be called (API)

• Extend the state class for each concrete state

• One class for each possible state

• Each state will have a reference to the object to which
it is attached

• Use this reference to access other state variables

• Use this reference to change state

State Pattern - Example
• OK cool, but what does all that actually mean?

• Let's use the cool-headed Bruce Banner as an example

• Bruce is a world-class scientist

• Bruce can successfully drive a car

• Bruce is not very helpful in a fight

State Pattern - Example
• However.. Make Bruce angry and he'll become The Incredible Hulk!

• Smashes cars

• Great in a fight

• Out of control!

State Pattern - Example
• One being

• Two significantly different behaviors depending on
his current state

State Pattern - Example
• To simulate Bruce in a program, we will create one

BruceBanner class containing the behavior in both
states

• Bruce Banner can use cars and fight very differently
depending on his state

• Defer to a State object to determine how he behaves

State Pattern - Example
• To simulate Bruce in a program, we

will create one BruceBanner class
containing the behavior in both states

• Bruce Banner can use cars and fight
very differently depending on his state

• Defer to a State object to determine
how he behaves

public class BruceBanner {
 private State state=new DrBanner(this);

 public void setState(State state){
 this.state=state;
 }
 public void makeAngry(){
 this.state.makeAngry();
 }
 public void calmDown(){
 this.state.calmDown();
 }
 public void useCar(Car car){
 this.state.useCar(car);
 }
 public void fight(){
 this.state.fight();
 }
}

State Pattern - Example
• Create State as an abstract class to define all

the methods each state must contain (API)

• Extend State for each possible concrete state

• Implement the methods for each state

public class BruceBanner {
 private State state=new DrBanner(this);
 public void setState(State state){
 this.state=state;
 }
 public void makeAngry(){
 this.state.makeAngry();
 }
 public void calmDown(){
 this.state.calmDown();
 }
 public void useCar(Car car){
 this.state.useCar(car);
 }
 public void fight(){
 this.state.fight();
 }
}

public class TheHulk implements State {
 private BruceBanner banner;
 public TheHulk(BruceBanner banner){
 this.banner=banner;
 }
 public void makeAngry(){
 System.out.println("already angry");
 }
 public void calmDown(){
 banner.setState(new DrBanner(banner));
 }
 public void useCar(Car car){
 car.smash();
 }
 public void fight(){
 System.out.println("Hulk Smash!");
 }
}

public class DrBanner implements State{
 private BruceBanner banner;
 public DrBanner(BruceBanner banner){
 this.banner=banner;
 }
 public void makeAngry(){
 banner.setState(new TheHulk(this.banner));
 }
 public void calmDown(){
 System.out.println("already calm");
 }
 public void useCar(Car car){
 car.drive(false);
 }
 public void fight(){
 System.out.println("this won't end well");
 }
}

public interface State {
 void makeAngry();
 void calmDown();
 void useCar(Car car);
 void fight();
}

State Pattern - Example
• BruceBanner class stores a variable

of type State

• Don't worry about what concrete
type state is

• Through polymorphism, the
methods in State must be
implemented and can be called

• Pass each new state a reference to
BruceBanner

• Use the keyword this

• Since the reference is passed, each
state can access Bruce's state
variables, including the state itself

public class BruceBanner {
 private State state=new DrBanner(this);
 public void setState(State state){
 this.state=state;
 }
 public void makeAngry(){
 this.state.makeAngry();
 }
 public void calmDown(){
 this.state.calmDown();
 }
 public void useCar(Car car){
 this.state.useCar(car);
 }
 public void fight(){
 this.state.fight();
 }
}

public interface State {
 void makeAngry();
 void calmDown();
 void useCar(Car car);
 void fight();
}

State Pattern - Example
• Having access to the state allows

each state to replace itself with a
new state

• We call this a state transition

public class TheHulk implements State {
 private BruceBanner banner;
 public TheHulk(BruceBanner banner){
 this.banner=banner;
 }
 public void makeAngry(){
 System.out.println("already angry");
 }
 public void calmDown(){
 banner.setState(new DrBanner(banner));
 }
 public void useCar(Car car){
 car.smash();
 }
 public void fight(){
 System.out.println("Hulk Smash!");
 }
}

public class DrBanner implements State{
 private BruceBanner banner;
 public DrBanner(BruceBanner banner){
 this.banner=banner;
 }
 public void makeAngry(){
 banner.setState(new TheHulk(this.banner));
 }
 public void calmDown(){
 System.out.println("already calm");
 }
 public void useCar(Car car){
 car.drive(false);
 }
 public void fight(){
 System.out.println("this won't end well");
 }
}

public interface State {
 void makeAngry();
 void calmDown();
 void useCar(Car car);
 void fight();
}

State Pattern - Example

public class BruceBanner {
 private State state=new DrBanner(this);
 public void setState(State state){
 this.state=state;
 }
 public void makeAngry(){
 this.state.makeAngry();
 }
 public void calmDown(){
 this.state.calmDown();
 }
 public void useCar(Car car){
 this.state.useCar(car);
 }
 public void fight(){
 this.state.fight();
 }
}

public class TheHulk implements State {
 private BruceBanner banner;
 public TheHulk(BruceBanner banner){
 this.banner=banner;
 }
 public void makeAngry(){
 System.out.println("already angry");
 }
 public void calmDown(){
 banner.setState(new DrBanner(banner));
 }
 public void useCar(Car car){
 car.smash();
 }
 public void fight(){
 System.out.println("Hulk Smash!");
 }
}

public class DrBanner implements State{
 private BruceBanner banner;
 public DrBanner(BruceBanner banner){
 this.banner=banner;
 }
 public void makeAngry(){
 banner.setState(new TheHulk(this.banner));
 }
 public void calmDown(){
 System.out.println("already calm");
 }
 public void useCar(Car car){
 car.drive(false);
 }
 public void fight(){
 System.out.println("this won't end well");
 }
}

public interface State {
 void makeAngry();
 void calmDown();
 void useCar(Car car);
 void fight();
}

State Pattern - Example
• With two states we could have easily used a single

conditional and a boolean flag to store the state

• Arguably simpler than using the state pattern

• The true power of this pattern comes when we
have more states

State Pattern - Example
• Meet Professor Hulk

• Bruce Banner transformed as the Hulk with full control

• Can drive a car and is great in a fight

State Pattern - Example
• To add the new state

• Create a new class and implement the State
methods

• Add a state transition to enter the new state

• Did not modify any existing functionality!

public class ProfessorHulk implements State{
 private BruceBanner banner;
 public ProfessorHulk(BruceBanner banner){
 this.banner=banner;
 }
 public void makeAngry(){
 System.out.println("no problem");
 }
 public void calmDown(){
 System.out.println("already calm");
 }
 public void useCar(Car car){
 car.drive(true);
 }
 public void fight(){
 System.out.println("smash carefully");
 }
}

public class BruceBanner {
 private State state=new DrBanner(this);

 public void setState(State state){
 this.state=state;
 }
 public void makeAngry(){
 this.state.makeAngry();
 }
 public void calmDown(){
 this.state.calmDown();
 }
 public void useCar(Car car){
 this.state.useCar(car);
 }
 public void fight(){
 this.state.fight();
 }
 public void learnControl(){
 this.state=new ProfessorHulk(this);
 }
}

State Pattern - Example
• If we want functionality that is the

same in all states

• Add it to the class containing the
state

• [Or, add it to the State class so all
states inherit that functionality]

• Bruce can become Professor Hulk
from either of his other states

• Add this transition to BruceBanner

• Note that there's no going back to
the other two states once he
becomes Professor Hulk

public class BruceBanner {
 private State state=new DrBanner(this);

 public void setState(State state){
 this.state=state;
 }
 public void makeAngry(){
 this.state.makeAngry();
 }
 public void calmDown(){
 this.state.calmDown();
 }
 public void useCar(Car car){
 this.state.useCar(car);
 }
 public void fight(){
 this.state.fight();
 }
 public void learnControl(){
 this.state=new ProfessorHulk(this);
 }
}

State Pattern - Example

Dr.
Banner

Professor
Hulk

The Hulk

makeAngry()

calmDown()

learnControl()

initial state

• State Diagrams

• Visualize states and state transitions

• Very helpful while designing with the state pattern

• The state diagram for Bruce Banner is as follows

learnControl()

State Pattern - Design
• Write your API

• What methods will change behavior depending
on the current state of the object

• These methods define your API and are declared
in the State class

• Decide what states should exist

• Any situation where the behavior is different
should be a new state

• Determine the transitions between states

